
9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 1/28

thirdweb A-14
Security Audit

August 21st, 2023
Version 1.0.0

https://0xmacro.com/

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 2/28

Presented by 0xMacro

https://0xmacro.com/

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 3/28

Table of Contents

Introduction

Overall Assessment

Specification

Source Code

Issue Descriptions and Recommendations

Security Levels Reference

Disclaimer

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 4/28

Introduction

This document includes the results of the security audit for thirdweb's smart contract code as found

in the section titled ‘Source Code’. The security audit was performed by the Macro security team from

August 8, 2023 to August 21, 2023.

The purpose of this audit is to review the source code of certain thirdweb Solidity contracts, and

provide feedback on the design, architecture, and quality of the source code with an emphasis on

validating the correctness and security of the software in its entirety.

Disclaimer: While Macro’s review is comprehensive and has surfaced some changes that should be

made to the source code, this audit should not solely be relied upon for security, as no single audit is

guaranteed to catch all possible bugs.

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 5/28

Overall Assessment

The following is an aggregation of issues found by the Macro Audit team:

Severity Count Acknowledged Won't Do Addressed

Critical 1 - - 1

High 1 - - 1

Medium 4 - - 4

Low 5 1 - 4

Code Quality 10 1 - 9

Gas Optimization 1 - - 1

thirdweb was quick to respond to these issues.

Specification

Our understanding of the specification was based on the following sources:

Discussions on Slack with the thirdweb team.

A audit handoff document provided through Notion.

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 6/28

Source Code

The following source code was reviewed during the audit:

Repository: contracts

Commit Hash: cfc3b05e719941d7787263a897542bddb05a6017

Specifically, we audited the following contracts within this repository:

Contract SHA256

contracts/dynamic-
contracts/extension/RulesEngine.sol

5a29b078c40eb0c585775e7e5cc40265299023165
cc969054b0c09e40781026a

contracts/dynamic-
contracts/extension/SharedMetadataBatch.sol

6ae8b789f73e18584343bd6a2665f49896b13a534
613e2115919cb349502f56a

contracts/smart-
wallet/dynamic/DynamicAccount.sol

5e986de2977d9ecf9360931be97eaad976509acb7
026ee1825b0b4e795842100

contracts/smart-
wallet/dynamic/DynamicAccountFactory.sol

416d40d2f3aa0c8f0895705477ab23973b41c1002
751628427ac6bcf5f0fa5a9

contracts/smart-
wallet/managed/ManagedAccount.sol

c3b4c601c4106391d59a9b3dff6ae1c89b83c8992
a51adaac89f73d8b7bb0e63

contracts/smart-
wallet/managed/ManagedAccountFactory.sol

5b33e3ef1a0491147e24c1047e68f852cf7061e16
71894a2e0e2a9242a80914d

contracts/smart-wallet/non-
upgradeable/Account.sol

8bce0fb10cac41141478a228a96dad12afe39db38
4d1938f2529cc455d27081f

contracts/smart-wallet/non-
upgradeable/AccountFactory.sol

ca1b595fe2f19497d4c1a01b76144ec3b2d5c6351
92171c00332ad258ec5fdec

contracts/smart-wallet/utils/AccountCore.sol
ae8078e8955b24c02c588a5b132813b9c9a08b32a
e0db39b1cf7348e2c29ff2c

https://github.com/thirdweb-dev/contracts

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 7/28

Contract SHA256

contracts/smart-
wallet/utils/AccountExtension.sol

2311f64bd2875e63ff395cacb12083411597c3731
d42a70e676f2fec925c065a

contracts/smart-wallet/utils/BaseAccount.sol
05841a1d7f05df8113f5e3c2e692121f69c190bdc
3c6072c954a9925d44ab6a2

contracts/smart-
wallet/utils/BaseAccountFactory.sol

d7181834e702d81b76569e722e342208fea45db7f
21a38c28839fb427c2d0a35

contracts/unaudited/LoyaltyPoints.sol b33c12660ea5b934875a66f992c228da0d7cd019f
abe7feeaf81efac2fffcc72

contracts/unaudited/evolving-
nfts/EvolvingNFT.sol

90c1072ed646669a51d7bcadaf92d6891d030739a
2ea67123d143901443938b8

contracts/unaudited/evolving-
nfts/EvolvingNFTLogic.sol

4fb77518d6c3134349bd6a420e35a1c30fb155892
f1ae78b2c108ff9c134d503

contracts/unaudited/evolving-
nfts/extension/RulesEngineExtension.sol

cbccc956811152c42e3804b848f387fb6bd9ac68d
2576f10af61ec25cb380854

Note: This document contains an audit solely of the Solidity contracts listed above. Specifically, the

audit pertains only to the contracts themselves, and does not pertain to any other programs or

scripts, including deployment scripts.

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 8/28

Issue Descriptions and Recommendations

Click on an issue to jump to it, or scroll down to see them all.

C-1 Uninitialized EvolvingNFT implementation contract can selfdestruct and brick

delegated proxies

H-1 isValidSignature accepts signatures all active signers, potentially allowing funds to be

lost

M-1 EntryPoint contract can change

M-2 Use of forbidden TIMESTAMP op-code

M-3 Scores using multiplicative rules for ERC20s can be inflated

M-4 Shared metadata will get out of order when deleting metadata

L-1 Unable to upgrade receive()

L-2 Cannot remove upgradability without revoking all default admins

L-3 isValidSignature should be upgradable

L-4 Invalid accounts can register with Account factories

L-5 Payable transfer and approvals can lead to native tokens stuck in contract

Q-1 Duplicate code

Q-2 Duplicate comment

Q-3 Constant MAX_BPS is not used

Q-4 Mistyped functions

Q-5 Missing NatSpec documentation

Q-6 Inaccurate comment

Q-7 _setPlatformFeeType() is not used

Q-8 Spelling mistakes

Q-9 Duplicate Import

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 9/28

Q-10 Unused contract

G-1 platformFeeType can share a storage slot

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 10/28

Security Level Reference

We quantify issues in three parts:

1. The high/medium/low/spec-breaking impact of the issue:

How bad things can get (for a vulnerability)

The significance of an improvement (for a code quality issue)

The amount of gas saved (for a gas optimization)

2. The high/medium/low likelihood of the issue:

How likely is the issue to occur (for a vulnerability)

3. The overall critical/high/medium/low severity of the issue.

This third part – the severity level – is a summary of how much consideration the client should give

to fixing the issue. We assign severity according to the table of guidelines below:

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 11/28

Severity Description

(C-x)

Critical

We recommend the client must fix the issue, no matter what, because not fixing

would mean significant funds/assets WILL be lost.

(H-x)

High

We recommend the client must address the issue, no matter what, because not

fixing would be very bad, or some funds/assets will be lost, or the code’s

behavior is against the provided spec.

(M-x)

Medium

We recommend the client to seriously consider fixing the issue, as the

implications of not fixing the issue are severe enough to impact the project

significantly, albiet not in an existential manner.

(L-x)

Low

The risk is small, unlikely, or may not relevant to the project in a meaningful way.

Whether or not the project wants to develop a fix is up to the goals and needs

of the project.

(Q-x)

Code Quality

The issue identified does not pose any obvious risk, but fixing could improve

overall code quality, on-chain composability, developer ergonomics, or even

certain aspects of protocol design.

(I-x)

Informational

Warnings and things to keep in mind when operating the protocol. No

immediate action required.

(G-x)

Gas

Optimizations

The presented optimization suggestion would save an amount of gas significant

enough, in our opinion, to be worth the development cost of implementing it.

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 12/28

Issue Details

C-1 Uninitialized EvolvingNFT implementation contract can selfdestruct and brick

delegated proxies

TOPIC

Upgradability

STATUS

Fixed

IMPACT

Critical

LIKELIHOOD

High

EvolvingNFT.sol inherits from BaseRouter.sol , which allows extensions to be added by a

permissioned account, which allows the contract to delegatecall to these set contracts, extending

its functionality. EvolvingNFT is also intended to be a implementation contract that proxy contracts

delegate to in order to save on deployment costs. The state of a implementation contract usually

doesn’t matter, however if there is any way to cause it to selfdestruct , it would destroy the

contract, and cause any proxies delegating to it to lose all of their functionality.

In the case of EvolvingNFT , it’s initializers are not disabled in its constructor, allowing anyone to call

its initialize() function and set themselves as the implementation contract’s defaultAdmin .

constructor(Extension[] memory _extensions) BaseRouter(_extensions) {}

/// @dev Initiliazes the contract, like a constructor.
function initialize(
 address _defaultAdmin,
 string memory _name,
 string memory _symbol,
 string memory _contractURI,
 address[] memory _trustedForwarders,
 address _saleRecipient,
 address _royaltyRecipient,
 uint128 _royaltyBps
) external initializer initializerERC721A {
 bytes32 _transferRole = keccak256("TRANSFER_ROLE");

 // Initialize inherited contracts, most base-like -> most derived.
 __ERC2771Context_init(_trustedForwarders);
 __ERC721A_init(_name, _symbol);

https://github.com/thirdweb-dev/contracts/commit/c5033936518a089e209ed825818215b0bf21457b

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 13/28

 _setupContractURI(_contractURI);
 _setupOwner(_defaultAdmin);
 _setupOperatorFilterer();

 _setupRole(DEFAULT_ADMIN_ROLE, _defaultAdmin);
 _setupRole(keccak256("MINTER_ROLE"), _defaultAdmin);
 _setupRole(_transferRole, _defaultAdmin);
 _setupRole(_transferRole, address(0));

 _setupDefaultRoyaltyInfo(_royaltyRecipient, _royaltyBps);
 _setupPrimarySaleRecipient(_saleRecipient);
}

Reference: EvolvingNFT.sol#L44-L74

This allows them to set themselves as the EXTENSION_ROLE , which they then can make calls to

BaseRouter 's addExtension() . Doing so can allow an extension to be added that calls

selfdestruct , which would cause the implementation contact to be destroyed.

This issue is also present in BurnToClaimDropERC721.sol

Remediations to Consider

Add a call to _disableInitializers() in EvolvingNFT.sol and BurnToClaimDropERC721 's constructor

to prevent a malicious user from taking control of the implementation contract and potentially

causing it to selfdestruct .

H-1 isValidSignature accepts signatures all active signers, potentially allowing funds

to be lost

TOPIC

Loss of Funds

STATUS

Fixed

IMPACT

High

LIKELIHOOD

Medium

As found initially and described in their report, signers set by the account admin can sign valid

signatures for target contracts that they are not authorized to interact with. Signers should be

restricted to only interact with contracts that have been explicitly set as a approvedTarget by a

admin of the wallet. However in isValidSignature() , it is only checked if the signer of the signature

is active, and not if the sender is an approvedTarget of the signer.

https://github.com/thirdweb-dev/contracts/blob/2bb75ada065b2a301149a859bb1f807b0c99fe71/contracts/unaudited/evolving-nfts/EvolvingNFT.sol#L44-L74
https://github.com/thirdweb-dev/contracts/commit/8f35cb2f8aa770f961d0a1a1cefe7f209bdda285
https://gist.github.com/abhishekvispute/a47472a1107384cf5db1470dc8a6d2cb

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 14/28

/// @notice See EIP-1271
function isValidSignature(bytes32 _hash, bytes memory _signature)
 public
 view
 virtual
 override
 returns (bytes4 magicValue)
{
 address signer = _hash.recover(_signature);

 if (isAdmin(signer) || isActiveSigner(signer)) {
 magicValue = MAGICVALUE;
 }
}

Reference: AccountCore.sol#L136-L149 and Account.sol#L158-L171

This can allow signers set by the wallet admin to interact with protocols that validate signatures with

contracts using isValidSignature() , like contracts that uses permit, permit2, or any protocol that

follows ERC-1271 for handling contract signatures. This can allow set signers to interact with contracts

that the wallet admin may not have intended them to be able to, potentially allowing assets within

the wallet to be drained.

Remediations to Consider

Check to ensure that the caller is an approvedTarget for the signer, if the signature doesn’t belong to

an admin.

M-1 EntryPoint contract can change

TOPIC

Spec

STATUS

Fixed

IMPACT

Medium

LIKELIHOOD

Medium

The smart wallet contracts currently set an immutable value for the entrypointContract . However as

expressed in the ERC-4337, it is possible that the entryPoint contract could change “to add new

functionality, improve gas efficiency, or fix a critical security bug”. Since there is no way currently to

set a new entryPoint contract, it would require a new wallet to be deployed and assets to be migrated

in order to use the updated entryPoint.

https://github.com/thirdweb-dev/contracts/blob/c3451e84a81522171c7d7a556c49e651ea2df990/contracts/smart-wallet/utils/AccountCore.sol#L136-L149
https://github.com/thirdweb-dev/contracts/blob/c3451e84a81522171c7d7a556c49e651ea2df990/contracts/smart-wallet/non-upgradeable/Account.sol#L158-L171
https://eips.ethereum.org/EIPS/eip-1271
https://github.com/thirdweb-dev/contracts/commit/b958a3b2b0ed25c98a42342fb730da6d7d9789d3
https://eips.ethereum.org/EIPS/eip-4337

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 15/28

Remediations to Consider

Add a function that allows the admin to update the entryPoint contract, allowing users to adapt to a

changing entryPoint, and continue to utilize the full functionality of ERC-4337.

M-2 Use of forbidden TIMESTAMP op-code

TOPIC

Spec

STATUS

Fixed

IMPACT

Medium

LIKELIHOOD

Low

As described in ERC-4337, the block.timestamp opcode is forbidden when validating user operations,

such as with the validateUserOp function. However, in each smart wallet contract, in order to

validate if a signer is valid, block.timestamp is used to check if the current time fits the time range set

by the admin for the signer. This can cause opperations to be valid when simulated, but when

executed at a later time could become invalidated and revert. Having wallets revert this way can

effect bundlers reputation and potentially cause bundlers to not include operations from these

wallets.

Remediations to Consider

As mentioned in the ERC, pack the timestamps validUntil and validAfter into the returned

validationData of validateUserOp() , this can be done using Helpers.sol ’s packValidationData()

function. This allows a bundler to simulate an operation and check if it would expire before it would

likely execute, allowing them to reject these nearly expired operations.

M-3 Scores using multiplicative rules for ERC20s can be inflated

TOPIC

Spec

STATUS

Fixed

IMPACT

Medium

LIKELIHOOD

Medium

https://github.com/thirdweb-dev/contracts/commit/3266e52d0bd71a021e100b96b1f0703fa73c0f98
https://eips.ethereum.org/EIPS/eip-4337
https://github.com/thirdweb-dev/contracts/commit/7de8d85948bf2cb1d5c3bab4ee96bae4a6120955

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 16/28

In RulesEngine.sol scores are calculated for users that have balances that meet the sets rules

criteria, and are either calculated as a flat score for Threshold rules, or the score is multiplied by the

users balance for Multiplicative rules. However, ERC20 tokens balance is returned as a large

number with a set Decimals , unlike ERC721 or ERC1155 tokens. This can lead to scores being

multiplied by large values that may be unintended.

Remediations to Consider

Consider using the ERC20 tokens decimals() and converting the balance in terms of full tokens

before multiplying by the score to receive a score more in line with the scores returned from ERC721

and ERC1155 .

M-4 Shared metadata will get out of order when deleting metadata

TOPIC

Protocol Design

STATUS

Fixed

IMPACT

Medium

LIKELIHOOD

Medium

The shared metadata is stored as an EnumerableSet , meaning the order of metadata is not

guaranteed, as described in the OpenZeppelin documentation. This means that when adding or

removing the metadata, its order will sometimes be altered.

For example, take the following scenario:

Shared metadata is set sequentially for 0, 10, 50, and 150 target scores.

The user score is 150, and the correct token URI is returned.

The metadata for a target score of 10 is removed.

Now the order of shared metadata is 0, 150, and 50.

The user scores the same at 150, yet the token URI that gets returned is 50.

The above happens due to the efficient implementation of remove() in the EnumerableSet . However,

it also disrupts the shared metadata order. As a result, the tokenUri() in EvolvingNFTLogic.sol

returns an incorrect token URI due to how the iteration is performed until the uint256(ids[i]) <=

score condition is satisfied, as shown below, and it expects the shared metadata to be stored in

sequential order:

https://github.com/thirdweb-dev/contracts/commit/411d47c07d9168ca3e478fefb7eb9ba75d5b8fc1
https://docs.openzeppelin.com/contracts/4.x/api/utils#EnumerableSet-at-struct-EnumerableSet-Bytes32Set-uint256-

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 17/28

function tokenURI(...) {
 // ...

 for (uint256 i = 0; i < ids.length; i += 1) {
 if (uint256(ids[i]) <= score) {
 targetId = ids[i];
 } else {
 break;
 }
 }

 // ...
}

Reference: EvolvingNFTLogic.sol#L75-L99

Remediations to Consider

Do not assume shared metadata order, and set targetId by identifying the shared metadata

with the largest target score. Then use that as the final result to be used for displaying the token

URI.

Add a way to alter the existing shared metadata so that the ordering of shared metadata is kept

intact.

Use another mechanism for storing shared mechanism such as a custom implementation of

EnumerableSet which does not alter the ordering.

L-1 Unable to upgrade receive()

TOPIC

Feature

STATUS

Fixed

IMPACT

Low

LIKELIHOOD

Low

One interesting aspect of a ERC-4337 wallet, or smart contract wallets in general, is the ability to react

to receiving native tokens, like ETH. For ManagedAccount.sol and DynamicAccount.sol adding the

ability to update the receive() function may be desired for user.

Remediations to Consider

https://github.com/thirdweb-dev/contracts/blob/macro-audit-loyalty-points-1/contracts/unaudited/evolving-nfts/EvolvingNFTLogic.sol#L75-L99
https://github.com/thirdweb-dev/contracts/commit/211dfdc043f66be8a9cd1c2974721df3c5813cac

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 18/28

Refactor the code to allow the receive() function to be set in an extension, allowing custom receive

fallbacks.

L-2 Cannot remove upgradability without revoking all default admins

TOPIC

Upgradability

STATUS

Fixed

IMPACT

Low

LIKELIHOOD

Low

In EvolvingNFT.sol the ability to add or update extensions to the contract can be called by an

account with the EXTENSION_ROLE . This role can only be granted and revoked by any account with the

DEFAULT_ADMIN_ROLE , since there is no role admin set for the EXTENSION_ROLE . In the case where a

project using these contracts wants to turn off the ability to add/update extensions, they would have

to revoke all users with the EXTENSION_ROLE as well as users with the DEFAULT_ADMIN_ROLE , since

they can grant the EXTENSION_ROLE to another user at a later time.

Revoking all accounts with the DEFAULT_ADMIN_ROLE may be undesirable as it also manages other

roles like the TRANSFER_ROLE and MINTER_ROLE , as well as setting multiple other values defined in

EvolvingNFTLogic.sol , all of which may be needed by the protocol.

Remediations to Consider

Set the EXTENSION_ROLE as it’s own role admin in the initializer and set an initial account with the

EXTENSION_ROLE , this will allow it so the contract can no longer be upgraded when there are no

account with the EXTENSION_ROLE .

L-3 isValidSignature should be upgradable

TOPIC

Upgradability

STATUS

Fixed

IMPACT

Low

LIKELIHOOD

Low

https://github.com/thirdweb-dev/contracts/commit/b99aff23fde9e223334ef98dff0eebf3d20dcb4e
https://github.com/thirdweb-dev/contracts/commit/17483d33c5c8c614dc36bad07521273b9a3297f9

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 19/28

DynamicAccount.sol and ManagedAccount.sol are upgradable ERC-4337 wallets that inherit base

immutable functionality from AccountCore.sol , and functions like those found in

AccountExtension.sol can be added or updated as extensions. Since isValidSignature() isn’t

necessary for the spec of ERC-4337, and there is the possibility that users may want custom

functionality for verifying valid signatures, it could be added to AccountExtension.sol to allow users

to update it as desired.

Remediations to Consider

Move isValidSignature() to AccountExtension.sol to allow users to have the ability to customize

how the contract validates signatures.

L-4 Invalid accounts can register with Account factories

TOPIC

Griefing

STATUS

Fixed

IMPACT

Low

LIKELIHOOD

Low

In BaseAccountFactory.sol , accounts are allowed to be registered to the factory by calling

onRegister() .

/// @notice Callback function for an Account to register itself on the factory.
function onRegister() external {
 address account = msg.sender;
 require(_isAccountOfFactory(account), "AccountFactory: not an account.");

 require(allAccounts.add(account), "AccountFactory: account already registered");
}

Reference: BaseAccountFactory.sol#L74-L80

However, there are no checks to ensure the caller is an account created by this factory. A contract

could potentially call onRegister() and become registered with this factory, if it passes the checks of

_isAccountOfFactory , which does not guarantee the account was created by the factory, as it only

checks if the factory’s implementation address is in the bytecode of the calling contract at the

expected location.

https://eips.ethereum.org/EIPS/eip-4337
https://github.com/thirdweb-dev/contracts/commit/b4e272974362e768c8498c5070cef2454fbfa9ac
https://github.com/thirdweb-dev/contracts/blob/main/contracts/smart-wallet/utils/BaseAccountFactory.sol#L74-L80

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 20/28

/// @dev Returns whether the caller is an account deployed by this factory.
function _isAccountOfFactory(address _account) internal view virtual returns (bool) {
 address impl = _getImplementation(_account);
 return _account.code.length > 0 && impl == accountImplementation;
}

function _getImplementation(address cloneAddress) internal view returns (address) {
 bytes memory code = cloneAddress.code;
 return BytesLib.toAddress(code, 10);
}

Reference: BaseAccountFactory.sol#L134-143

Setting an invalid address for an account can lead to inaccurate book keeping, and if any contract or

protocol were to query the factory to check if an address is a account created by the factory, it may

not be accurate.

Since these contracts are generated using create2 , if the initial seed to generate the account is

provided, the generated address that the factory would have deployed can be predicted using

Clones.predictDeterministicAddress() and checked with the calling contract to verify the account

was created by the factory.

Remediations to Consider

When registering an account with a factory, accept the initial admin and data parameter used to

generate the account address and verify that the caller is the same as the predicted address

generated by those values. This will ensure only accounts created by the factory can be registered.

L-5 Payable transfer and approvals can lead to native tokens stuck in contract

TOPIC

Error Recovery

STATUS

Acknowledged

IMPACT

Medium

LIKELIHOOD

Low

EvolvingNFTLogic.sol 's approve() , transferFrom() and safeTransferFrom() functions are set to

payable which allows native tokens to be sent into the contract when making these function calls.

However, native tokens sent in via these function calls are not used, and there is no way to withdraw

these tokens without a permissioned user adding an extension to do so. In cases where extension

https://github.com/thirdweb-dev/contracts/blob/c3451e84a81522171c7d7a556c49e651ea2df990/contracts/smart-wallet/utils/BaseAccountFactory.sol#L134-L143

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 21/28

permissions have been revoked, there would be no way to withdraw these sent in funds. There is a

chance that funds could be sent to the contract accidentally, especially when interacting with third

party protocols like etherscan to transfer tokens or set approvals as it would prompt the user to enter

a value of native tokens to send, which may get confused for other function parameters. It is

understood that using the payable keyword reduces gas costs as there is no check to ensure that

msg.value == 0 , but the added gas cost is negligible compared to the potential downsides.

Remediations to Consider

Remove the payable keywords from EvolvingNFTLogic.sol 's approve() , transferFrom() and both

safeTransferFrom() functions, in order to prevent native tokens from accidentally getting stuck in

the contract.

RESPONSE BY THIRDWEB

Q-1 Duplicate code

TOPIC

Code Quality

STATUS

Fixed

QUALITY IMPACT

Medium

Account.sol and AccountCore.sol share a lot of the same functions, and the code is identical, and

both inherit BaseAccount.sol . Duplicate code can cause errors as changes to the code has to be

done in multiple places.

Remediations to Consider

Refactor Account.sol and AccountCore.sol to prevent duplicate code, and reducing the chance of

errors when updating these contracts.

These functions are payable since they override from the ERC721AUpgradeable contract, where

these functions are payable ref.

We will fix this issue later on, where we do a sweep of our external dependencies.

https://github.com/thirdweb-dev/contracts/commit/e40d0f009d20c16183fcb0e5563073240e0ab597
https://github.com/chiru-labs/ERC721A-Upgradeable/blob/main/contracts/ERC721AUpgradeable.sol#L591

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 22/28

Q-2 Duplicate comment

TOPIC

Code Quality

STATUS

Fixed

QUALITY IMPACT

Low

In AccountCore.sol there is a duplicate comment.

// We use the underlying storage instead of high level view functions to save gas.
// We use the underlying storage instead of high level view functions to save gas.

Reference: Account.sol#L81-L82

Remediations to Consider

Remove the duplicate comment.

Q-3 Constant MAX_BPS is not used

TOPIC

Code Quality

STATUS

Fixed

QUALITY IMPACT

Low

Constant MAX_BPS is declared in EvolvingNFTLogic.sol, yet it’s not used in the contract.

Remediations to Consider

Remove MAX_BPS .

https://github.com/thirdweb-dev/contracts/commit/151ce528f64bf2c25623d02d98a8c4fb4e56dc56
https://github.com/thirdweb-dev/contracts/blob/macro-audit-updated-smart-wallets-1/contracts/smart-wallet/utils/AccountCore.sol#L81-L82
https://github.com/thirdweb-dev/contracts/commit/f68dd8f085d28bd674cf237b02f4f71ab2b4b34a

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 23/28

Q-4 Mistyped functions

TOPIC

Code Quality

STATUS

Fixed

QUALITY IMPACT

Low

RulesEngine.sol contains mistyped functions which can be corrected as follows:

_canOverrieRulesEngine() → _canOverrideRulesEngine()

createRuleMulitiplicative*() →* createRuleMultiplicative()

Q-5 Missing NatSpec documentation

TOPIC

Code Quality

STATUS

Acknowledged

QUALITY IMPACT

Low

Functions in these contracts use NatSpec documentation, but they tend to not include the @param

and @return tags, which give more information about the intent of the function, and is used by some

protocols like etherscan to make improve the user experience when making these calls. Additionally

RulesEngine.sol does not have any NatSpec documentation.

Remediations to Consider

Add missing NatSpec documentation.

RESPONSE BY THIRDWEB

We’re planning a sweep of the repository to add proper Natspec documentation across all

Solidity files.

https://github.com/thirdweb-dev/contracts/commit/742a53dd727486e17e5d70afd12ca7a2fa2aecf9

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 24/28

Q-6 Inaccurate comment

TOPIC

Code Quality

STATUS

Fixed

QUALITY IMPACT

Low

In EvolvingNFT.sol there is a comment above the EXTENSION_ROLE that mentions the MINTER_ROLE .

/// @dev Only MINTER_ROLE holders can sign off on `MintRequest`s.
bytes32 private constant EXTENSION_ROLE = keccak256("EXTENSION_ROLE");

Reference: EvolvingNFT.sol#L41-L42

Remediations to Consider

Update the comment to accurately describe the EXTENSION_ROLE .

Q-7 _setPlatformFeeType() is not used

TOPIC

Code Quality

STATUS

Fixed

QUALITY IMPACT

Low

In PlatformFee.sol , the internal function _setPlatformFeeType() is not used, and similar logic is

found in the external function setPlatformFeeType() . Other functions within this contract have a

pattern of an external call with checks, to a internal call that changes state and emits the event, but

these functions break that pattern.

/// @notice Lets a module admin set platform fee type.
function setPlatformFeeType(PlatformFeeType _feeType) external {
 if (!_canSetPlatformFeeInfo()) {
 revert("Not authorized");
 }
 platformFeeType = _feeType;

 emit PlatformFeeTypeUpdated(_feeType);

https://github.com/thirdweb-dev/contracts/commit/7e67729c05a0478523b5a0867819e9535c7bc911
https://github.com/thirdweb-dev/contracts/blob/main/contracts/unaudited/evolving-nfts/EvolvingNFT.sol#L41-L42
https://github.com/thirdweb-dev/contracts/commit/ab607cb579939a5a16600d8d3b42b37184077743

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 25/28

}

/// @dev Sets platform fee type.
function _setupPlatformFeeType(PlatformFeeType _feeType) internal {
 platformFeeType = _feeType;

 emit PlatformFeeTypeUpdated(_feeType);
}

Reference: PlatformFee.sol#L88-L103

Remediations to Consider

Consider having setPlatformFeeType() call _setPlatformFeeType() after the checks to prevent

duplicate code and follow to the set style pattern.

Q-8 Spelling mistakes

TOPIC

Code Quality

STATUS

Fixed

QUALITY IMPACT

Low

In LoyaltyPoints.sol , in the comment above mintWithSignature() , "recipient" is spelled incorrectly

/// @notice Mints tokens to a recipeint using a signature from an authorized party.

Reference: LoyaltyPoints.sol#L119

Additionally, in most contracts with an initializer, there is a comment that misspells the word

“initializes”.

/// @dev Initiliazes the contract, like a constructor.

Reference: EvolvingNFT.sol#L48

Remediations to Consider

https://github.com/thirdweb-dev/contracts/blob/c3451e84a81522171c7d7a556c49e651ea2df990/contracts/extension/PlatformFee.sol#L88-L103
https://github.com/thirdweb-dev/contracts/commit/28eaed18e136c23c7ac32840d18cba8d426c290e
https://github.com/thirdweb-dev/contracts/blob/5bd29c0e277193d4a73239efb65cb2f91eccb26c/contracts/unaudited/LoyaltyPoints.sol#L119
https://github.com/thirdweb-dev/contracts/blob/main/contracts/unaudited/evolving-nfts/EvolvingNFT.sol#L48

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 26/28

Fix these spelling mistakes.

Q-9 Duplicate Import

TOPIC

Code Quality

STATUS

Fixed

QUALITY IMPACT

Low

In LoyaltyPoints.sol, PrimarySale.sol is imported twice.

import "./extension/PrimarySale.sol";
import "./extension/PrimarySale.sol";

Reference: LoyaltyPoints.sol#L27-L28

Remediations to Consider

Remove the duplicate import.

Q-10 Unused contract

TOPIC

code Quality

STATUS

Fixed

QUALITY IMPACT

Low

In the utils directory of smartWallet, there is a BaseRouter.sol contract that is not used or

referenced.

Remediations to Consider

Remove BaseRouter.sol .

https://github.com/thirdweb-dev/contracts/commit/8f098e2c50598405c86b36583b7ad226528ad218
https://github.com/thirdweb-dev/contracts/blob/c3451e84a81522171c7d7a556c49e651ea2df990/contracts/LoyaltyPoints.sol#L27-L28
https://github.com/thirdweb-dev/contracts/commit/c840fd5b9a7b57f670ea4daebbe59c0e8113310a

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 27/28

G-1 platformFeeType can share a storage slot

TOPIC

Gas Optimization

STATUS

Fixed

GAS SAVINGS

Low

In PrimarySale.sol , the storage values platformFeeRecipient and platformFeeBps are defined next

to each other, and since platformFeeRecipient is an address , taking 20 bytes of space, and

platformFeeBps is a uint16 taking 2 bytes of space, there is 10 bytes left over in the first storage

slot. The next defined value is flatPlatformFee , a uint256 which needs its own storage slot, and

platformFeeType is defined after, and is a PlatformFeeType enum which takes up 1 byte of space,

and since the second slot above it is full, it will take up a the 3rd storage slot on its own. If

platformFeeType is defined before flatPlatformFee , it will share the first storage slot with

platformFeeRecipient and platformFeeBps , saving a new storage write when set, and since these

values are typically read together it would benefit from warm SLOAD ’s whenever they are read

together.

/// @dev The address that receives all platform fees from all sales.
address private platformFeeRecipient;

/// @dev The % of primary sales collected as platform fees.
uint16 private platformFeeBps;

/// @dev The flat amount collected by the contract as fees on primary sales.
uint256 private flatPlatformFee;

/// @dev Fee type variants: percentage fee and flat fee
PlatformFeeType private platformFeeType;

Reference: PrimarySale.sol#L16-L26

Remediations to Consider

Swap the positions of platformFeeType and flatPlatformFee to save users gas on storage reads and

writes.

https://github.com/thirdweb-dev/contracts/commit/b7c454071a86d662283ee3db0762f97f44d04b60
https://github.com/thirdweb-dev/contracts/blob/c3451e84a81522171c7d7a556c49e651ea2df990/contracts/extension/PlatformFee.sol#L16-L26

9/13/23, 11:51 AM thirdweb A-14 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/thirdweb-14.html 28/28

Disclaimer

Macro makes no warranties, either express, implied, statutory, or otherwise, with respect to the

services or deliverables provided in this report, and Macro specifically disclaims all implied warranties

of merchantability, fitness for a particular purpose, noninfringement and those arising from a course

of dealing, usage or trade with respect thereto, and all such warranties are hereby excluded to the

fullest extent permitted by law.

Macro will not be liable for any lost profits, business, contracts, revenue, goodwill, production,

anticipated savings, loss of data, or costs of procurement of substitute goods or services or for any

claim or demand by any other party. In no event will Macro be liable for consequential, incidental,

special, indirect, or exemplary damages arising out of this agreement or any work statement, however

caused and (to the fullest extent permitted by law) under any theory of liability (including negligence),

even if Macro has been advised of the possibility of such damages.

The scope of this report and review is limited to a review of only the code presented by the thirdweb

team and only the source code Macro notes as being within the scope of Macro’s review within this

report. This report does not include an audit of the deployment scripts used to deploy the Solidity

contracts in the repository corresponding to this audit. Specifically, for the avoidance of doubt, this

report does not constitute investment advice, is not intended to be relied upon as investment advice,

is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of

the project. In this report you may through hypertext or other computer links, gain access to websites

operated by persons other than Macro. Such hyperlinks are provided for your reference and

convenience only, and are the exclusive responsibility of such websites’ owners. You agree that Macro

is not responsible for the content or operation of such websites, and that Macro shall have no liability

to your or any other person or entity for the use of third party websites. Macro assumes no

responsibility for the use of third party software and shall have no liability whatsoever to any person

or entity for the accuracy or completeness of any outcome generated by such software.

