
thirdweb A-13
Security Audit

June 30th, 2023
Version 1.0.0

https://0xmacro.com/

Presented by 0xMacro

https://0xmacro.com/

Table of Contents

Introduction

Overall Assessment

Specification

Source Code

Issue Descriptions and Recommendations

Security Levels Reference

Disclaimer

Introduction

This document includes the results of the security audit for thirdweb's smart contract code as found

in the section titled ‘Source Code’. The security audit was performed by the Macro security team from

June 13, 2023 to June 23, 2023.

The purpose of this audit is to review the source code of certain thirdweb Solidity contracts, and

provide feedback on the design, architecture, and quality of the source code with an emphasis on

validating the correctness and security of the software in its entirety.

Disclaimer: While Macro’s review is comprehensive and has surfaced some changes that should be

made to the source code, this audit should not solely be relied upon for security, as no single audit is

guaranteed to catch all possible bugs.

Overall Assessment

The following is an aggregation of issues found by the Macro Audit team:

Severity Count Acknowledged Won't Do Addressed

High 1 - - 1

Medium 1 - - 1

Code Quality 4 - - 4

Informational 2 - - 2

thirdweb was quick to respond to these issues.

Specification

Our understanding of the specification was based on the following sources:

Discussions on Slack with the thirdweb team.

A audit handoff document provided through Notion.

Source Code

The following source code was reviewed during the audit:

Repository: contracts

Commit Hash (Dynamic Drops): 3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c

Commit Hash (Loyalty Card): 92dca09d6e621f74eb2462b8f338a15886875917

We audited the following contracts specificially for the Dynamic Drops audit:

Contract SHA256

contracts/drop/DropERC1155.sol
0221834d3c7730d145930f479fc98bcc03616eabf
e23c497b14eb9d1b2c86dd9

contracts/drop/DropERC20.sol 0a28be6097dcd800e22e100c782f45de8cbe81270
5f4709e9f292ad1a30697b0

contracts/drop/DropERC721.sol 58416dca2883e77353d01b9c4260e4a9f574a996e
3dc64f374c9d894aac2a557

contracts/drop/extension/DropERC1155Logic.sol
1f0e424580d57138ec83673e8f0bf36ed4acbdcc6
11d29a13eef57e08190a5fe

contracts/drop/extension/DropERC1155Storage.
sol

a464054c1c1739f2b0a00cc3199d2387e741fb561
e04625cd8b0755b1e35ac91

contracts/drop/extension/DropERC20Logic.sol 0b60e52a768ed82f904f37dfcd2199679185a3728
5821d6e039fd4b110c216aa

contracts/drop/extension/DropERC20Storage.so
l

2e4d2b99fcc3634bd7301546e98f92651981f3e97
c2696a0fd9f5c0a9cffcbd6

contracts/drop/extension/DropERC721Logic.sol
7bfbe8b00f98f5ef7e4e1079dbb9d088d466801c5
0c7279973119b3d5eb38f24

contracts/drop/extension/DropERC721Storage.s
ol

fe7442085abda7c6599e9dd5d80300a8d38b977dd
3e1a5b006366bf2b4df82d7

https://github.com/thirdweb-dev/contracts

We audited the following contracts specificially for the Loyalty Card audit:

Contract SHA256

contracts/LoyaltyCard.sol
964f38e8692c8d932cd1d7be3494ffa04e6bdcf34
9b7ac9d8cf0dfd348f864b7

Note: This document contains an audit solely of the Solidity contracts listed above. Specifically, the

audit pertains only to the contracts themselves, and does not pertain to any other programs or

scripts, including deployment scripts.

Issue Descriptions and Recommendations

Click on an issue to jump to it, or scroll down to see them all.

H-1 Mint price is determined by quantity

M-1 Native token can get locked in drop contracts

Q-1 ReentrancyGuardUpgradeable not initialized

Q-2 Unused role OPERATOR_ROLE

Q-3 Unused Import

Q-4 Storage gap variable not needed

I-1 Transfers are enabled by default

I-2 No support for flat platform fee

Security Level Reference

We quantify issues in three parts:

1. The high/medium/low/spec-breaking impact of the issue:

How bad things can get (for a vulnerability)

The significance of an improvement (for a code quality issue)

The amount of gas saved (for a gas optimization)

2. The high/medium/low likelihood of the issue:

How likely is the issue to occur (for a vulnerability)

3. The overall critical/high/medium/low severity of the issue.

This third part – the severity level – is a summary of how much consideration the client should give

to fixing the issue. We assign severity according to the table of guidelines below:

Severity Description

(C-x)

Critical

We recommend the client must fix the issue, no matter what, because not fixing

would mean significant funds/assets WILL be lost.

(H-x)

High

We recommend the client must address the issue, no matter what, because not

fixing would be very bad, or some funds/assets will be lost, or the code’s

behavior is against the provided spec.

(M-x)

Medium

We recommend the client to seriously consider fixing the issue, as the

implications of not fixing the issue are severe enough to impact the project

significantly, albiet not in an existential manner.

(L-x)

Low

The risk is small, unlikely, or may not relevant to the project in a meaningful way.

Whether or not the project wants to develop a fix is up to the goals and needs

of the project.

(Q-x)

Code Quality

The issue identified does not pose any obvious risk, but fixing could improve

overall code quality, on-chain composability, developer ergonomics, or even

certain aspects of protocol design.

(I-x)

Informational

Warnings and things to keep in mind when operating the protocol. No

immediate action required.

(G-x)

Gas

Optimizations

The presented optimization suggestion would save an amount of gas significant

enough, in our opinion, to be worth the development cost of implementing it.

Issue Details

H-1 Mint price is determined by quantity

TOPIC

Incentive Design

STATUS

Fixed

IMPACT

High

LIKELIHOOD

Medium

LoyaltyCard.mintWithSignature always only mints 1 NFT to the user as stated in the comments:

/// @dev Mints an NFT according to the provided mint request. Always mints 1 NFT.

and defined by the line LoyaltyCard#L276:

_safeMint(_to, 1);

However, in _collectPrice , the total price the user has to pay is calculated as follows:

uint256 totalPrice = _quantityToClaim * _pricePerToken;

Thus, for quantity > 1, the user has to pay the total price determined by the quantity, despite only

getting 1 NFT minted.

Remediations to Consider

Consider only allowing mint request with quantity = 1 and otherwise revert.

https://github.com/thirdweb-dev/contracts/commit/43ebc9a209fe49d8f71fb2f42a6b2e4a56fe62e9
https://github.com/thirdweb-dev/contracts/blob/ef8f6da0f3bed3c4be267a3052e21b711a74212d/contracts/LoyaltyCard.sol#L276

M-1 Native token can get locked in drop contracts

TOPIC

Use Cases

STATUS

Fixed

IMPACT

High

LIKELIHOOD

Low

Reference: DropERC20Logic.sol#L124, DropERC721Logic.sol#L199, DropERC1155Logic.sol#L206

Description

DropERC20Logic inherits from Drop contract which implements the payable claim(…) function

that calls _collectPriceOnClaim to transfer payment to feeRecipient and saleRecipient .

The issue of locking native tokens in the contract occurs under the following circumstances:

1. Payment currency in claimConditions is set to ERC20.

2. A user calls claim with appropriate amount of ERC20 tokens approved and accidentally also

passes native tokens along.

As a result, the claim call succeeds but the native tokens passed along will be locked within the

DropERC20 contract.

Note that this issue also applies to DropERC721Logic and DropERC1155Logic .

An admin could rescue the tokens by adding a new extension that provides appropriate function to

transfer tokens back to original owners. However, it is recommended to avoid such situations in the

first place.

Remediations to Consider

Consider checking that no native tokens are transferred (msg.value == 0) when payment currency is

set to ERC20.

Q-1 ReentrancyGuardUpgradeable not initialized

TOPIC STATUS QUALITY IMPACT

https://github.com/thirdweb-dev/contracts/commit/d3b50d0a838f0a434be93219915da802f3083a50
https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/drop/extension/DropERC20Logic.sol#L124
https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/drop/extension/DropERC721Logic.sol#L199
https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/drop/extension/DropERC1155Logic.sol#L206

Best Practice Fixed Low

LoyaltyCard inherits from ReentrancyGuardUpgradeable but is not being initialized in the

initialize function.

Note that due to the logic in ReentrancyGuardUpgradeable , this doesn’t impose any security risk, but

it is considered as best practice to properly initialize all parent contracts.

Remediations to Consider

Consider initializing ReentrancyGuardUpgradeable properly by adding __ReentrancyGuard_init to the

initialize function.

Q-2 Unused role OPERATOR_ROLE

TOPIC

Clean Code

STATUS

Fixed

QUALITY IMPACT

Low

OPERATOR_ROLE is declared in the following contracts:

DropERC721.sol#L83

DropERC1155.sol#L88

DropERC721Logic.sol#L66

DropERC1155Logic.sol#L64

However, this role is not used anywhere else in the code

Remediations to Consider

Consider removing OPERATOR_ROLE declarations from above contracts.

https://github.com/thirdweb-dev/contracts/commit/93319e133f8bb309b986738a9fc0ef22396c56ce
https://github.com/thirdweb-dev/contracts/commit/44e0639b026d29a239009aacda47d04ecb27131c
https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/drop/DropERC721.sol#L83
https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/drop/DropERC1155.sol#L88
https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/drop/extension/DropERC721Logic.sol#L66
https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/drop/extension/DropERC1155Logic.sol#L64

Q-3 Unused Import

TOPIC

Clean Code

STATUS

Fixed

QUALITY IMPACT

Low

The following imports of ReentrancyGuardInit are not required and can be removed:

DropERC20.sol#L27

DropERC721.sol#L31

DropERC1155.sol#L32

The following import of ERC20VotesStorage is not required and can be removed:

DropERC20Logic.sol#L21

Q-4 Storage gap variable not needed

TOPIC

Clean Code

STATUS

Fixed

QUALITY IMPACT

Low

Due to the use of dynamic contract pattern and its use of unstructured storage, __gap variables

declared in some of the upgradable contracts are not needed. Consider removing the __gap variable

from the following files:

ERC2771ContextUpgradeable.sol#L66

ERC20BurnableUpgradeable.sol#L50

ERC20Upgradeable.sol#L393

ERC20VotesUpgradeable.sol#L276

draft-EIP712Upgradeable.sol#L122

https://github.com/thirdweb-dev/contracts/commit/b7885770ed44c970c12850fd1d507540e5d43416
https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/drop/DropERC20.sol#L27
https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/drop/DropERC721.sol#L31
https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/drop/DropERC1155.sol#L32
https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/drop/extension/DropERC20Logic.sol#L21
https://github.com/thirdweb-dev/contracts/commit/a8f776b91b417969678a97e8e6780b12ed4a503d
https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/dynamic-contracts/extension/ERC2771ContextUpgradeable.sol#L66
https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/dynamic-contracts/eip/ERC20BurnableUpgradeable.sol#L50
https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/dynamic-contracts/eip/ERC20Upgradeable.sol#L393
https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/dynamic-contracts/eip/ERC20VotesUpgradeable.sol#L276
https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/dynamic-contracts/eip/draft-EIP712Upgradeable.sol#L122

draft-ERC20PermitUpgradeable.sol#L107

I-1 Transfers are enabled by default

TOPIC

Use Case

STATUS

Fixed

IMPACT

Informational ✳

LoyaltyCard allows the transfers of NFTs by default; enabled by the following line in initialize :

_setupRole(TRANSFER_ROLE, address(0));

Due to the use case of LoyaltyCard - namely issuing NFTs to loyal customers - consider restricting

transfers by default for normal users and only allow transfers for admins having the TRANSFER_ROLE

assigned.

I-2 No support for flat platform fee

TOPIC

Use Case

STATUS

Fixed

IMPACT

Informational ✳

OpenEditionERC721 has been recently updated to support a new fee mechanism called “flat fee”

besides “percentage fee”. However, all three drop contracts only support “percentage fee”. Consider

updating drop contracts to support “flat fee” in addition to “percentage fee”.

https://github.com/thirdweb-dev/contracts/blob/3cb172774ecbc4a77b7713ddd0e1ca6d56eb412c/contracts/dynamic-contracts/eip/draft-ERC20PermitUpgradeable.sol#L107
https://github.com/thirdweb-dev/contracts/commit/44e0639b026d29a239009aacda47d04ecb27131c
https://github.com/thirdweb-dev/contracts/commit/44e0639b026d29a239009aacda47d04ecb27131c

Disclaimer

Macro makes no warranties, either express, implied, statutory, or otherwise, with respect to the

services or deliverables provided in this report, and Macro specifically disclaims all implied warranties

of merchantability, fitness for a particular purpose, noninfringement and those arising from a course

of dealing, usage or trade with respect thereto, and all such warranties are hereby excluded to the

fullest extent permitted by law.

Macro will not be liable for any lost profits, business, contracts, revenue, goodwill, production,

anticipated savings, loss of data, or costs of procurement of substitute goods or services or for any

claim or demand by any other party. In no event will Macro be liable for consequential, incidental,

special, indirect, or exemplary damages arising out of this agreement or any work statement, however

caused and (to the fullest extent permitted by law) under any theory of liability (including negligence),

even if Macro has been advised of the possibility of such damages.

The scope of this report and review is limited to a review of only the code presented by the Emergent

team and only the source code Macro notes as being within the scope of Macro’s review within this

report. This report does not include an audit of the deployment scripts used to deploy the Solidity

contracts in the repository corresponding to this audit. Specifically, for the avoidance of doubt, this

report does not constitute investment advice, is not intended to be relied upon as investment advice,

is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of

the project. In this report you may through hypertext or other computer links, gain access to websites

operated by persons other than Macro. Such hyperlinks are provided for your reference and

convenience only, and are the exclusive responsibility of such websites’ owners. You agree that Macro

is not responsible for the content or operation of such websites, and that Macro shall have no liability

to your or any other person or entity for the use of third party websites. Macro assumes no

responsibility for the use of third party software and shall have no liability whatsoever to any person

or entity for the accuracy or completeness of any outcome generated by such software.

